2025MBA報考測評申請中......
說明:您只需填寫姓名和電話即可免費預約!也可以通過撥打熱線免費預約
我們的工作人員會在最短時間內給予您活動安排回復。
導讀:
數列之無敵解法
詳細研讀本篇數列解法和例題,可快速解決任何MBA數列問題。
基本數列是等差數列和等比數列
一、等差數列
一個等差數列由兩個因素確定:首項a1和公差d.
得知以下任何一項,就可以確定一個等差數列(即求出數列的通項公式):
1、首項a1和公差d
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
3、任意兩項a(n)和a(m),n,m為已知數
等差數列的性質:
1、前N項和為N的二次函數(d不為0時)
2、a(m)-a(n)=(m-n)*d
3、正整數m、n、p為等差數列時,a(m)、a(n)、a(p)也是等差數列
例題1:已知a(5)=8,a(9)=16,求a(25)
解: a(9)-a(5)=4*d=16-8=8
a(25)-a(5)=20*d=5*4*d=40
a(25)=48
例題2:已知a(6)=13,a(9)=19,求a(12)
解:a(6)、a(9)、a(12)成等差數列
a(12)-a(9)=a(9)-a(6)
a(12)=2*a(9)-a(6)=25
二、等比數列
一個等比數列由兩個因素確定:首項a1和公差d.
得知以下任何一項,就可以確定一個等比數列(即求出數列的通項公式):
1、首項a1和公比r
2、數列前n項和s(n),因為s(1)=a1,s(n)-s(n-1)=a(n)
責任編輯:
社科賽斯官方微信
社科賽斯官方微博
【版權與免責聲明】 如發現內容存在版權問題,煩請提供相關信息發郵件至service@mbaschool.com.cn,我們將及時溝通與處理。本站內容除非來源注明社科賽斯,否則均為網絡轉載,涉及言論、版權與本站無關。